
Web Architectures
Layer, Languages, Protocols

Luigi De Russis

202/10/22

Goal

• Understand what is the Web and its architecture
– main (logical) components
– main network protocols
– existing architectural patterns and languages

• Know the interaction and communication across components
• Learn the basics of how a browser works

• NOTE: Several of the topics mentioned here will be presented in more
details along the course

302/10/22

N-tier (N-level) Architecture

• Each level/tier has a well-defined
role

• One or more servers implement
each tier/layer

• More servers can share the same
hardware or can run on
dedicated devices

• Communication between
tiers/levels is achieved through
the network

Browser

Internet
Infrastructure

Web Server

Application Server

Database Server 3rd Party Services

Other
Client

402/10/22

502/10/22

Browsers

HTML 5, CSS, JavaScript,
DOM, Events

602/10/22

Browser

Browser The HTML file might link to other resources (images, videos, …)
as well as JavaScript and CSS files,
which the browser then also loads

These are stored or generated by a server

Web Page

702/10/22

HTML

• Hyper Text Markup Language
• Defines the structure of a web page
• A series of “tags” with an associated semantic meaning
– <html>…</html>
– <body>…</body>
– <header>…</header>
–
– <p>…</p>

802/10/22

Browser

Browser The content of the web page is described by HTML+CSS.

Clicking on a link brings the user to a new page.
Interacting with other elements may generate Events inside the browser.

Such Events are “captured” by JavaScript and may update the page content.

Web Page

View page content

Interact with page
elements (forms,
buttons, links, …)

Navigate to

other pages

902/10/22

Conceptual Browser Architecture (from 10,000 feet)
• User Interface: the address bar, back/forward button,

bookmarking menu, etc. Every part of the browser display
except the window where you see the requested page

• The Browser Engine marshals actions between the UI and the
rendering engine

• Rendering Engine: responsible for displaying the requested
content. For example, if the requested content is HTML, the
rendering engine parses HTML and CSS, and displays the parsed
content on the screen

• Networking: for network calls such as HTTP requests, using
different implementations for different platform behind a
platform-independent interface

• UI Backend: used for drawing basic widgets like combo boxes
and windows. This backend exposes a generic interface that is
not platform specific. Underneath it uses operating system user
interface methods

• JavaScript Interpreter: used to parse and execute JavaScript
code

• Data Persistence: a persistence layer. The browser may need to
save all sorts of data locally, such as cookies. Browsers also
support storage mechanisms such as LocalStorage, IndexedDB,
WebSQL and FileSystem

1002/10/22

Browser Development Tools

1102/10/22

Document Object Model (DOM)

• Standard data structure for
representing the web page content

• Allows to get, change, add, or
delete HTML elements

• Supported by all browsers
• JavaScript programs can read and

modify the DOM
• Abstracts and standardizes APIs to

– Browser
– HTML

"The W3C Document Object Model
(DOM) is a platform and language-
neutral interface that allows programs
and scripts to dynamically access and
update the content, structure, and
style of a document."

1202/10/22

Cascading Style Sheets (CSS)

• Define the style and appearance of a web page
• Allow the definition of complex layouts
• Adapt web pages to
– different resolutions
– different devices (e.g., smartphones)
– different preferences (e.g., color schemes)
– to different media (e.g., text vs. video)
– in a standard way

1302/10/22

Cascading Style Sheets (CSS)

• A set of “declarations” applied to some “selectors”
– Selectors identify portions of the DOM
– Declarations set the value of some properties
– Properties control everything

• color, size, font, alignment, border, shadow, position, selection status, transitions, links,
buttons, cursors, …

1402/10/22

JavaScript

• JS Interpreter embedded in the browser
– Executes within a strict “sandbox”

• JS Scripts loaded by the HTML page
– <script src="/js/myscript.js"
type="text/javascript"></script>

• JS Scripts have read-write access to
– Browser API
– HTML DOM (including form data)
– User events and actions

1502/10/22

HTTP Protocol

URL, HTTP methods, JSON data

1602/10/22

Uniform Resource Locator (URL)

• http://www.sadev.co.za/users/1/contact

• http://www.sadev.co.za?user=1&action=contact

• https://bbd.co.za/index.html#about

Scheme Hostname Path

Scheme Hostname Query

Scheme Hostname Path Fragment

1702/10/22

HTTP Protocol
GET / HTTP/1.1
Host: www.polito.it
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Connection: keep-alive
Cookie: __utma=55042356.701936439.1606736391.1615238467.1615289682.230; __utmz=55042356. [...]
Upgrade-Insecure-Requests: 1
Pragma: no-cache
Cache-Control: no-cache

RFC 2616, RFC 2617
http://www.w3.org/Protocols

HTTP Request

1802/10/22

HTTP Protocol
GET / HTTP/1.1
Host: www.polito.it
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Connection: keep-alive
Cookie: __utma=55042356.701936439.1606736391.1615238467.1615289682.230; __utmz=55042356. [...]
Upgrade-Insecure-Requests: 1
Pragma: no-cache
Cache-Control: no-cache

RFC 2616, RFC 2617
http://www.w3.org/Protocols

HTTP Request

HTTP/1.1 200 OK
Date: Tue, 09 Mar 2021 14:21:35 GMT
Server: Apache
Strict-Transport-Security: max-age=31536000
Content-Security-Policy: script-src 'self' 'unsafe-inline' 'unsafe-eval' [...]
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Referrer-Policy: no-referrer-when-downgrade
Feature-Policy: accelerometer 'none'; camera 'none'; geolocation 'none’; [...]
Last-Modified: Tue, 09 Mar 2021 14:03:41 GMT
Cache-Control: no-cache, must-revalidate
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 11905
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="it">
<head>

<meta charset="UTF-8">
<title>Politecnico di Torino</title>

. . .

HTTP Response

Header

Blank line

Body

1902/10/22

HTTP Response Body

Generation
• Empty Response Body
– Errors

• Static file (exists in the server)
– HTML (seldom)
– Images, JavaScript, CSS, …

• Dynamically generated on-the-fly
by the server
– HTML (generated with templates)
– JSON data

File and Content Type
• HTTP does not care about the

meaning of the payload
• Web content
– HTML, CSS, JS
– Used by the browser

• Data content (API)
– JSON, XML, binary data, …
– Used by JavaScript code

2002/10/22

Dynamic Web Transaction

Client

URL
and data HTTP request

with data

HTTP responsedisplay
page

TCP/IP

comm
and

browser web
server

application
server

send
HTML

parameters

logic

2102/10/22

HTTP Methods

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

2202/10/22

Web Server

Serving pages, Serving files,
Executing APIs

2302/10/22

Server

• Logical definition
– A process that runs on a host that relays information to a client upon the client

sending it a request

• Physical definition
– A host computer on a network that holds information (e.g., Web sites) and

responds to requests for information

2402/10/22

Web Server

• A web server delivers web resources in response to a request
– manages the HTTP protocol to handle requests and provide responses

• It either reads or generates a web page
– receives client requests
– reads static page from the filesystem
– asks the application server to generate dynamic pages (server-side)
– provides a file (HTML, CSS, JS, JSON, …) back to the client

• One HTTP connection for each request
• Multi-process, multi-threaded or process pool

2502/10/22

Web Servers… in the wild

source: https://news.netcraft.com/archives/2022/08/26/august-2022-web-server-survey.html

https://news.netcraft.com/archives/2022/08/26/august-2022-web-server-survey.html

2602/10/22

Web Servers… in the wild

source: https://news.netcraft.com/archives/2022/08/26/august-2022-web-server-survey.html

https://news.netcraft.com/archives/2022/08/26/august-2022-web-server-survey.html

2702/10/22

Web Server con Python

• Python provides a “http.server” module that implements a basic web
server

• Flask: a simple web application framework, easy to extend with various
available extensions
– https://flask.palletsprojects.com/

• Other alternatives:
– Django: very popular full-stack web framework
– Tornado: focus on performance
– Bottle: simple and fast micro-framework
– web2py: full-stack web framework with various conventions
– …

https://flask.palletsprojects.com/

2802/10/22

Persistence Layer

Databases (SQL / NoSQL)

2902/10/22

ARCHITECTURAL PATTERNS

3002/10/22

“Traditional” Architectural Pattern

• The so-called “Rich Client” is the “traditional” approach, now
• The server sends a new HTML page for each request it receives
– with related resources (i.e., images, CSS, …)
– some parts of those pages can be, then, dynamically updated with asynchronous

JavaScript requests

• A web application is doing server-side rendering, and a multi-page web
application is created

3102/10/22

Rich Client: All The Layers At Work…

command

web server application
server

send

parameters

logic

HTML/JSON/…

Client Web Server

URL
and data HTTP request

(with data)

HTTP response
display
page

TCP/IPbrowser

Database Server

data

query
(SQL)

database

Client-side app
(JavaScript)

runtime

DOM

JSON data

Data request

3202/10/22

Modern Patterns

Other three patterns to architect a web application exist, roughly
1. Single-Page Application (SPA)
– the server sends the exact same web page for every unique URL
– the page runs JavaScript to change the content and the aspect
– by querying another (logical) server which provides "raw" information

3302/10/22

Single Page Application (SPA)

• An evolution of the “traditional” approach
– JavaScript starts with an (almost empty) HTML
– add all the content dynamically
– instead of asking for data to update some

parts of a well-formed page

• Goal: to serve an outstanding User
Experience with no page reloading and no
extra time waiting

• Examples: Google Docs, Trello

Browser

Application server

Business services,
data, …

Web Server (logic)

Async JS engine

User Interface

HTTP
requests

UI fragments,
JSON data, …

Browser

Application server

Business services,
data, …

SPA engine

User Interface

HTTP
requests

JSON data

"Traditional" SPA

3402/10/22

SPA: Disadvantages

• Search Engine Optimization (SEO) is hard
– Google launched a new scheme to increase single-page app SEO optimization, but

this means extra work for the developer
• Browser history is not working
– Web History API exists to tackle this problem and to allow a developer to emulate

the back and forth action
• Security issues
– Given that "all the logic is in the client", special care should be taken when

handling access control. Cross-Site Scripting (XSS) is a problem as well.
• Client-side rendering can be slow!

3502/10/22

Modern Patterns

Other three patterns to architect a web application exist, roughly
1. Single-Page Application (SPA)
– the server sends the exact same web page for every unique URL
– the page runs JavaScript to change the content and the aspect
– by querying another (logical) server which provides "raw" information

2. Isomorphic Application
– Combination of SPA with server-side rendering

3. Progressive Web App (PWA)
– Web applications that emulate “native” apps

3602/10/22

Front-ends, Back-ends, Databases

source: https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

3702/10/22

References

• HTTP/1.x vs. HTTP/2 – The Difference Between the Two Protocols Explained -
https://cheapsslsecurity.com/p/http2-vs-http1/

• How Browsers Work: Behind the scenes of modern web browsers -
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

• Inside look at modern web browser
– Part 1: https://developers.google.com/web/updates/2018/09/inside-browser-part1
– Part 2: https://developers.google.com/web/updates/2018/09/inside-browser-part2
– Part 3: https://developers.google.com/web/updates/2018/09/inside-browser-part3
– Part 4: https://developers.google.com/web/updates/2018/09/inside-browser-part4

https://cheapsslsecurity.com/p/http2-vs-http1/
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part2
https://developers.google.com/web/updates/2018/09/inside-browser-part3
https://developers.google.com/web/updates/2018/09/inside-browser-part4

3802/10/22

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

