
Forms and Sessions
Enabling User Interaction

Luigi De Russis

More

213/11/22

Topics

• Forms for user interaction
– HTML5 tags for input
– Validation
– Handling form in Flask

• Sessions
– One way to “remember” information

313/11/22

HTML5 FORMS
Handling User Input

413/11/22

Form Declaration

• <form> tag
• Specifies URL to be used for submission (attribute action)
• Specifies HTTP method (attribute method, default GET)

...
<form action="/new-user" method="POST" id="userdata">

...normal HTML content...
and

...FORM Controls...
</form>
...

513/11/22

Form Controls

• A set of HTML elements allowing different types of user
input/interaction. Each element should be uniquely identified by the
value of the name attribute

• Several control categories
– Input
– Selection
– Button

• Support elements
– Label
– Datalist

https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Forms

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

613/11/22

Input Control

• <input> tag
• Text input example
• The value attribute will hold user-provided text

...
<input type="text" name="firstname" placeholder="Your username"></input>
...

713/11/22

Input Control (2)

• type attribute
– button
– checkbox
– color
– date
– email
– file
– hidden
– month
– number
– password

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

813/11/22

Input Control (3)

• type attribute
– radio (button)
– range
– submit/reset (button)
– search
– tel
– text
– url
– week

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

913/11/22

Input Control: Commonly Used Attributes
Attribute Meaning

checked radio/checkbox is selected

disabled control is disabled

readonly value cannot be edited

required need a valid input to allow form submission

size the size of the control (pixels or characters)

value the value inserted by the user

autocomplete hint for form autofill feature of the browser

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Attributes

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

1013/11/22

Input Control: Other Attributes

• Depends on the control

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input#Attributes

<input type="number" name="age" placeholder="Your age" min="18" max="110" />

<input type="text" name="username" pattern="[a-zA-Z]{8}" />

<input type="file" name="docs" accept=".jpg, .jpeg, .png" />

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

1113/11/22

Label Tag

• The HTML <label> element represents a caption for an item in a user
interface. Associated with for attribute and id on input

• Important for accessibility purposes (e.g. screenreader etc.), clicking the
label activates the control (larger activation area e.g. in touch screens)

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label

<div class="preference">
<label for="cheese">Do you like cheese?</label>
<input type="checkbox" name="cheese" id="cheese">

</div>
<div class="preference">

<label for="peas">Do you like peas?</label>
<input type="checkbox" name="peas" id="peas">

</div>
Click!

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/label

1213/11/22

Other Form Controls

<textarea>:
a multi-line text field

https://developer.mozilla.org/en-US/docs/Learn/Forms/Other_form_controls

https://developer.mozilla.org/en-US/docs/Learn/Forms/Other_form_controls

1313/11/22

Other Form Controls

Drop-down controls

https://developer.mozilla.org/en-US/docs/Learn/Forms/Other_form_controls

<select id="groups" name="groups">
<optgroup label="fruits">
<option>Banana</option>
<option selected>Cherry</option>
<option>Lemon</option>

</optgroup>
<optgroup label="vegetables">
<option>Carrot</option>
<option>Eggplant</option>
<option>Potato</option>

</optgroup>
</select>

https://developer.mozilla.org/en-US/docs/Learn/Forms/Other_form_controls

1413/11/22

Button Control

• <button> tag
• Three types of buttons

– submit: submits the form to the server
– reset: reset the content of the form to the initial value
– button: just a button, whose behavior needs to be specified by JavaScript

...
<button type="submit" value="Send data" />
...

1513/11/22

button vs. input type=button

More flexible, can have content (markup, images, etc.)

...
<button class="favorite styled"

type="button">
Add to favorites

</button>
...
<button name="favorite">
<svg aria-hidden="true" viewBox="0 0 10 10"><path

d="M7 9L5 8 3 9V6L1 4h3l1-3 1 3h3L7 6z"/></svg>
Add to favorites

</button>
...

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button

1613/11/22

Default Appearance May Vary

• Solve with CSS, but
• Some problems still remain

– See: "Styling web forms" in MDN
– Examples of controls difficult to

manage:
• Bad: Checkboxes, …
• Ugly: Color, Range, File: cannot be

styled via CSS

https://developer.mozilla.org/en-US/docs/Learn/Forms/Styling_web_forms

https://developer.mozilla.org/en-US/docs/Learn/Forms/Styling_web_forms

1713/11/22

The Road to Nicer Forms

• Useful libraries (frameworks)
– Especially for controls difficult to handle via CSS

• Suggestions
– Bootstrap
– Using libraries may improve accessibility

https://developer.mozilla.org/en-US/docs/Learn/Forms/Advanced_form_styling

https://developer.mozilla.org/en-US/docs/Learn/Forms/Advanced_form_styling

1813/11/22

Forms in Bootstrap

https://getbootstrap.com/docs/5.2/forms/overview/

https://getbootstrap.com/docs/5.2/forms/overview/

1913/11/22

Form Validation

• When entering data into a form, the browser will check to see if the data
is in the correct format and with the constraints set by the application
– Client-side validation: via HTML5 and JavaScript
– Server-side validation: the application server will take care of it

• After client-side validation, data can be submitted to the server
• Why client-side validation?
– We want to get the right data in the right format before processing the data
– We want to protect users’ data (e.g., enforcing secure passwords)
– We want to protect the application (however, NEVER TRUST client-side validation

on server side)

2013/11/22

Types Of Client-Side Validation

• Built-in form validation by HTML5 input elements. Examples:
– Email: check if the inserted value is a valid email (syntax only)
– URL: check if it is a valid URL
– Number: check if the text is a number
– Attribute required: if a value is not present, form cannot be submitted
– …

• JavaScript validation: custom code is used to check correctness of values
– More on this later in the course

2113/11/22

Built-In Form Validation

• Mainly relies on element attributes such as:
– required: if a value is not present, form cannot be submitted
– minlength maxlength for text
– min max for numerical values
– type: type of data (email, url, etc.)
– pattern: regular expression to be matched

• When element is valid, the :valid CSS pseudo-class applies, which can
be used to style valid elements, otherwise :invalid applies

2213/11/22

Built-In Form Validation Styling

...
<form>
<label for="e_addr">Email Address:<label>
<input type="email" id="e_addr" id="email" required

placeholder="Enter a valid email address">
</form>
...

input:invalid {
border: 2px dashed red;

}

input:valid {
border: 2px solid black;

}

2313/11/22

HANDLING FORMS IN FLASK
When the client interacts with the server

2413/11/22

Forms Data In Flask

• The entire content of a submitted form is sent with an HTTP request
(POST or PUT) to the application server (e.g., Flask)

• Flask packs all form’s variables in a 'request.form' object
– A dictionary

• ‘request’ is a global implicit object that must be imported

from flask import request

age = request.form['age'] # or .get(age) – safer

2513/11/22

Forms Data In Flask

• If the key does not exist in the form attribute, a KeyError is raised
• If you do not catch it, a HTTP 400 Bad Request error page is shown
– For many situations, this is a good behavior

• For URL query parameters, instead, use request.args

age = request.args.get('age')

2613/11/22

Server-Side Form Validation

• Fundamental
– To use and store the “correct” values

• You can do it manually, e.g.,

• You can also use a Flask extension such as WTForm

if age and isinstance(age, int):
if age > 0:

...

2713/11/22

Logging

• Sometimes you want to log what is going on in the server
– And notify any errors!

• Flask provides pre-configured logging facilities, ready to use

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

2813/11/22

Passing Values To a Template

• Pass it with render_template()
– as you did for any other variables
– form values are independent from template parameters

return render_template('welcome.html’, name=user_from_form)

<p>Welcome {{ name }}!</p>

2913/11/22

File Uploads

• Forms for uploading files needs the enctype="multipart/form-
data" attribute in the HTML document
– Sent with POST, PUT, or PATCH
– Otherwise, the browser will not transfer the files

• In Flask, you can access and save the uploaded files via the request
object

uploaded_file = request.files['file']
uploaded_file.save('uploads/uploaded_file.txt')

3013/11/22

File Uploads

• The original filename (with extension) is available in the filename
attribute
– Before using it to save a file on disk, it must be checked and sanitized with
secure_filename()

– Again, never trust the information coming from a client!

uploaded_file = request.files['file']
filename = secure_filename(uploaded_file.filename)
uploaded_file.save(f'uploads/{filename}')

3113/11/22

Remembering Values

Problem: values in request.form expire immediately
– We may want to “remember” values for a longer time

Solutions:
1. Storing them in session containers

– Based on HTTP cookies
– Kept in memory (often) in the web server
– Valid for limited time, e.g., until browser disconnection or timeout

2. Storing them in a connected database
– Persistent storage
– Kept on disk in the database server
– Requires explicit DB connection

3213/11/22

SESSIONS
Remembering information

3313/11/22

Sessions

• HTTP is stateless
– each request is independent and must be self-contained

• A web application may need to keep some information between
different interactions

• For example:
– in an on-line shop, we put a book in a shopping cart
– we do not want our book to disappear when we go to another page to buy

something else!
– we want our “state” to be remembered while we navigate through the website

3413/11/22

Sessions

• A session is temporary and interactive data interchanged between two
or more parties (e.g., devices)

• It involves one or more messages in each direction
• Often, one of the parties keeps the state of the application
• It is established at a certain point it time and ended at some later point

3513/11/22

Cookie

• A small portion of information stored in the browser (in its cookie
storage)

• Automatically handled by browsers
• Automatically sent by the browser to servers when performing a request

to the same domain and path
– options are available to send them in other cases

• Keep in mind that sensitive information should NEVER be stored in a
cookie!

https://en.wikipedia.org/wiki/HTTP_cookie
https://tools.ietf.org/html/rfc6265

https://en.wikipedia.org/wiki/HTTP_cookie
https://tools.ietf.org/html/rfc6265

3613/11/22

Cookie

• Some relevant attributes, typically set by the server:
– name, the name of the cookie [mandatory]

• Example: ID

– value, the value contained in the cookie [mandatory]
• Example: 94$KKDEC3343KCQ1!

– secure, if set, the cookie will be sent to the server over HTTPS, only
– httpOnly, if set, the cookie will be inaccessible to JavaScript code running in the

browser
– expiration date

Applicazioni Web I - Web Applications I - 2020/2021

3713/11/22

Example: Sessions for User Authentication
• The user state is stored on the server
– in a storage or, for development only, in memory

Browser Server

POST /login

{ username,
password }

Response Cookie
{ sessionId }

GET /exams

Cookie
{ sessionId }

Response
Exams are

[...]

Save
session
data

Check sessionId (in cookie)
Retrieve stored session data

Execute SQL queries

if not successful:
401 Unauthorized

Session storage
{ sessionId : {

username,
userinfo,

temp_data, …} }

3813/11/22

A Note About Security…

• Always use HTTPS and “secure” cookies (at least in production)
– use “httpOnly” cookies

• Never store sensitive information into cookies
– even if they are “httpOnly”

• Rely on best practices and avoid to re-invent the wheel for auth
• Web applications can be exposed to several “basic” attacks

– CSRF (Cross-Site Request Forgery), a user is tricked by an attacker into submitting a
request that they did not intend

– XSS (Cross-Site Scripting), attackers inject malicious JavaScript code into web pages
– Most of these can be prevented with a proper usage of frameworks, best practices, and

dedicated libraries

3913/11/22

Sessions in Flask

• Sessions are automatically initialized and managed by Flask as client-side
sessions

• Session data is encrypted. You must define a secret key
– app.secret_key = 'whoknowsthissecret’
– the user could look at the contents of the cookie but not modify it, unless they know the

secret key
• The ‘session’ object is a global shared dictionary that stores attribute-value

pairs in a cookie

session['user'] = name

<p>Welcome {{ session['user'] }}!</p>

4013/11/22

Client-side vs. Server-side Sessions

Client-side Sessions

• All the data is in a cookie, in the
user’s browser
– The cookie can become very big
– Clients can read all the pieces of

information (secrets?)

• The server is entirely stateless
– It does not need to store any data
– The server cannot revoke a session

Server-side Sessions

• All the data is on the server
– Cookies are typically used to store

and pass around a SessionID
– Clients can only read the SessionID

• The server is stateful
– You can store more data than in a

cookie
– Scalability is more challenging

4113/11/22

Server-side Sessions in Flask

• Use the Flask-Sessions extension
– https://flask-session.readthedocs.io/en/latest/
– pip install Flask-Session

• Implements best practices for cookies (e.g., httponly)
– Allow the developer to change the other properties

• Support six different session storages (default: null)
– null, redis, memcached, filesystem, mongodb, db (SQLAlchemy)

https://flask-session.readthedocs.io/en/latest/

4213/11/22

Automatic Redirects

• In some cases, a user action does not need to generate a response page
– E.g., the Logout action needs to destroy the session, but will just bring you to the

normal ‘index’ page

• You may use a ‘redirect’ method to instruct the browser that the current
response is empty, and it must load the new page (HTTP 302)

return redirect(url_for('index'))

4313/11/22

Example – app.py
from flask import Flask, url_for, render_template, redirect, request, session
from flask_session import Session

app = Flask(__name__)
app.config['SESSION_TYPE'] = 'filesystem'
Session(app)

@app.route('/')
def index():

return render_template('index.html')

@app.route('/new-user', methods=['POST', 'GET'])
def new-user():

if request.method == "POST":
session['name'] = request.form.get('name')
return redirect('/')

return render_template('new-user.html')

4413/11/22

Example – index.html
{% extends "base.html" %}

{% block content %}

{% if session.name %}
<p>Welcome, {{ session.name }}!</p>

{% else %}
<p>Welcome, John Doe!</p>

{% endif %}

{% endblock %}

4513/11/22

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

