
Databases…
in Python
Storing data (on the server, too)

Luigi De Russis

More

Photo by Tobias Fischer on Unsplash

https://unsplash.com/@tofi?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/database?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

227/11/22

Goal

• Making data ‘persistent’
– When application restarts

• Manage big amounts of data
– Not all in-memory

• Exploit the power of SQL
– Complex data
– Complex queries

327/11/22

Python application

General Architecture

DBMS
server

427/11/22

Analyzed Databases

MySQL

• Open-source database server
(from Oracle)

• Full featured
• Runs as a separate process (may

be on a different computer)
• Allows concurrent access
• https://www.mysql.com

MariaDB

• Open-source fork of MySQL
server

• Community-driven
• 99% compatible
• In some cases, faster
• On most Linux distributions
• http://mariadb.org/

https://www.mysql.com/
http://mariadb.org/

527/11/22

Python application

General Architecture

SQLite library

627/11/22

Analyzed Databases

MySQL / MariaDB SQLite

• Open-source file-based storage
• Software library integrated in

your program (serverless)
• Self-contained
• https://www.sqlite.org/

11/27/22 Python databases 6

https://www.sqlite.org/

727/11/22

Python application

General Architecture

Database API definition: PEP 0249

MySQL/MariaDB
server SQLite library

827/11/22

Python application

General Architecture
Flask application

Database API definition: PEP 0249

MySQL “connector”
module SQLite module

SQLite libraryMySQL/MariaDB
server

927/11/22

Other Options

• PostgreSQL – more complex, but more complete than MySQL/MariaDB

• Non-relational databases (NoSQL)
– not considered here

1027/11/22

PEP 0249

• Python Database API Specification v2.0
– https://www.python.org/dev/peps/pep-0249/

• Specifies a standard API that Python modules that are used to access
databases should implement

• Does not provide a library nor a module
• Third-party modules may adhere to these specifications

https://www.python.org/dev/peps/pep-0249/

1127/11/22

Main Concepts in PEP 249

• Access to database is provided through a connect method, that returns a
Connection object

• For executing queries, you need a Cursor object, that can be obtained by
the Connection

• A cursor may execute() a SQL query, with parameters
• A cursor may fetch the results of the query

1227/11/22

Minimal Example

sql = "SELECT id, original, modified FROM translation"

conn = mysql.connector.connect(user='root', password='',
host='localhost', database='funnyecho')

cursor = conn.cursor()
cursor.execute(sql)

translations = cursor.fetchall()

cursor.close()
conn.close()

return translations

1

2

3

4

5

6

1327/11/22

Minimal Example

11/27/22 Python databases 13

sql = "SELECT id, original, modified FROM translation"

conn = mysql.connector.connect(user='root', password='',
host='localhost', database='funnyecho')

cursor = conn.cursor()
cursor.execute(sql)

translations = cursor.fetchall()

cursor.close()
conn.close()

return translations

1

2

3

4

5

6

The only step that depends on
the type of database

1427/11/22

Step 1: Query Definition

• Write a correct SQL statement, stored as a Python string
– sql = "SELECT id, original, modified FROM translation"

• Variable arguments may be specified with ‘%s’ or ‘?’ placeholders
– according to the underlying database/library
– sql = "INSERT INTO translation (original, modified) VALUES
(%s, %s)"

– sql = "INSERT INTO translation (original, modified) VALUES
(?, ?)"

1527/11/22

Placeholders

• Never use string concatenation over SQL statements. N.E.V.E.R. Huge
security problems (SQL Injection)

• SQL statement “templates” that include placeholders
• Actual values passed in .execute()
• Different libraries use different types of placeholder

1627/11/22

Placeholder Syntax

MySQL/MariaDB

• C-like format string
• ...WHERE name=%s
• Beware: always use %s, even for

numeric data – not %d or %f

SQLite

• Question mark
• ...WHERE name=?

1727/11/22

Step 2: Database Connection

• Depending on the library, use the provided ‘connect’ method
• The method parameters are dependent on the module implementation

(non-standard)
– conn = mysql.connector.connect(user='root', password='',
host='localhost', database='funnyecho')

– conn = sqlite3.connect('example.db')

1827/11/22

Step 3: Query Execution

• First, obtain a cursor from the connection
– cursor = conn.cursor()

• Then, execute the query
– cursor.execute(sql)

• Query parameters (%s/? placeholders) are specified as a ‘tuple’
argument
– cursor.execute(sql, (txtbefore, txtafter))
– cursor.execute(sql, (txtid,))
– Beware: one-element tuples require trailing ,

1927/11/22

Step 4 (SELECT): Result Analysis

• Only if the query was a SELECT
• Use various methods of cursor:
– cursor.fetchone() # next result
– cursor.fetchall() # all remaining results
– They return tuples, corresponding to the SELECT’ed columns
– https://www.python.org/dev/peps/pep-0249/#cursor-methods

https://www.python.org/dev/peps/pep-0249/

2027/11/22

Step 4 (UPDATE): Commit the Change

• For INSERT, UPDATE and DELETE there is no result
• The change is not applied immediately to the database, but needs to be

“committed”
• conn.commit()
– Will commit all pending executed queries in the connection

• Must be called before conn.close()
• DO NOT forget, or you will lose your data

2127/11/22

Step 5 (a): Clean Up

• When the cursor is no longer needed
• cursor.close()

2227/11/22

Step 5 (b): Clean Up

• Do not forget to close the connection, thus freeing up resources on the
database server
– conn.close()

• Write the close statement immediately, otherwise you will forget it
• Remember not to ‘return’ the function before cleaning up

2327/11/22

Step 6: Use the Results

• Analyze the returned data and do what the application requires for them
• If further queries are needed, go back to step 3
– re-use the same Connection, creating new Cursors

2427/11/22

Using SQLite

• SQLite is a simple file-based storage library
• Since Python 2.5, it is included by default, in the “sqlite3” package
– https://docs.python.org/3/library/sqlite3.html
– Developed at https://github.com/ghaering/pysqlite

• The “connection” just means specifying the file name
– import sqlite3
– conn = sqlite3.connect('example.db')

• Remember: placeholder = ?

11/27/22 Python databases 24

https://docs.python.org/3/library/sqlite3.html
https://github.com/ghaering/pysqlite

2527/11/22

Alternative SQLite Libraries

• Another Python SQLite Wrapper
– https://github.com/rogerbinns/apsw/

• More powerful and complete than the built-in library
• It does not follow the PEP 249
– No interchangeability with other database drivers L

https://github.com/rogerbinns/apsw/

2627/11/22

USING MYSQL OR MARIADB
Extra, for the curious

2727/11/22

Using MySQL

• Pre-requisite: a working installation of the mysql server
– http://dev.mysql.com/downloads/mysql/

• Pre-requisite: a working installation of the mariadb server
– https://mariadb.org/download/

http://dev.mysql.com/downloads/mysql/
https://mariadb.org/download/

2827/11/22

MySQL Connectors

Official connector (Oracle)

• Download and install the “MySQL
Connector for Python”
– http://dev.mysql.com/downloads/c

onnector/python/
– Provides the package

“mysql.connector”

Alternative (from pip)

• Pure Python implementation
– https://github.com/PyMySQL/PyMy

SQL/
– pip install PyMySQL
– Provides the package “pymysql”

• Nearly drop-in replacement
• Easier to install

http://dev.mysql.com/downloads/connector/python/
https://github.com/PyMySQL/PyMySQL/

2927/11/22

MySQL Python Connector

• To use: import mysql.connector
• Well-done documentation at
– http://dev.mysql.com/doc/connector-python/en/index.html

http://dev.mysql.com/doc/connector-python/en/index.html

3027/11/22

Connecting With mysql (Oracle)

• Basic form
– import mysql.connector
– cnx = mysql.connector.connect (

• user='joe',
• password='xxx',
• database='test',
• host='localhost')

• Additional parameters
– http://dev.mysql.com/doc/connector-python/en/connector-python-

connectargs.html

http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

3127/11/22

Connecting with PyMySQL

– import pymysql
– cnx = pymysql.connect (...)
– cursor = cnx.cursor()

• ... Same connection parameters
• … Same placeholder (%s)
• … When in doubt, check the Oracle documentation

3227/11/22

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

