
JavaScript (basics)
“The” language of the Web

Alberto Monge Roffarello

More

212/12/22
https://www.codemio.com/2016/09/html5-css3-javascript-cheat-sheets.html

https://www.codemio.com/2016/09/html5-css3-javascript-cheat-sheets.html

312/12/22

Goal

• Introducing JavaScript
• Understand the specific semantics and some programming patterns
• Objects, Functions, and Dates
• Updated to ES6 (2015) language features
• Supported by client-side (browsers) run-time environment

412/12/22

Outline

• What is JavaScript?
• History and versions
• Language structure
• Types, variables
• Expressions
• Control structures
• Arrays
• Strings
• Functions

512/12/22

WHAT IS JAVASCRIPT?
JavaScript – The language of the Web

612/12/22

source: https://octoverse.github.com/#top-languages

https://octoverse.github.com/

712/12/22

JavaScript

• JavaScript (JS) is a programming language
• It is currently the only programming language that a browser can

execute natively…
• … and it also run on a computer, like other programming languages

(thanks to Node.js)
• It has nothing to do with Java
– named that way for marketing reasons, only

• The first version was written in 10 days (!)
– several fundamental language decisions were made because of company politics

and not technical reasons!

812/12/22

HISTORY AND VERSIONS
JavaScript – The language of the Web

912/12/22
Applicazioni Web I - Web Applications I - 2021/2022

https://www.slideshare.net/RafaelCasusoRomate/javascript-editions-es7-es8-and-es9-vs-v8

10
yrs

Main
target

ES9,
ES10,

…

Also: ES2015

Also: ES2016

Also: ES2017

Brendan Eichhttps://www.ecma-international.org/ecma-262/

https://www.slideshare.net/RafaelCasusoRomate/javascript-editions-es7-es8-and-es9-vs-v8

1012/12/22

JavaScript versions

• ECMAScript (also called ES) is the official name of JavaScript (JS) standard
• ES6, ES2015, ES2016 etc. are implementations of the standard
• All browsers used to run ECMAScript 3
• ES5, and ES2015 (=ES6) were huge versions of JavaScript
• Then, yearly release cycles started
– By the committee behind JS: TC39, backed by Mozilla, Google, Facebook, Apple,

Microsoft, Intel, PayPal, SalesForce, etc.

• ES2015 (=ES6) is covered in this course

1112/12/22

Official ECMA standard (formal and unreadable)

https://www.ecma-international.org/ecma-262/

https://www.ecma-international.org/ecma-262/

12

• V8 (Chrome V8) by Google
– used in Chrome/Chromium, Node.js and Microsoft Edge

• SpiderMonkey by Mozilla Foundation
– Used in Firefox/Gecko

• ChakraCore by Microsoft
– it was used in Edge

• JavaScriptCore by Apple
– used in Safari

JavaScript Engines

1312/12/22

Standard vs. Implementation (in browsers)

1412/12/22

JS Compatibility

• JS is backwards-compatible
– once something is accepted as valid JS, there will not be a future change to the language

that causes that code to become invalid JS
– TC39 members: "we don't break the web!"

• JS is not forwards-compatible
– new additions to the language will not run in an older JS engine and may crash the

program
• strict mode was introduced to disable very old (and dangerous) semantics
• Supporting multiple versions is achieved by:

– Transpiling – Babel (https://babeljs.io) converts from newer JS syntax to an equivalent
older syntax

– Polyfilling – user- (or library-)defined functions and methods that “fill” the lack of a
feature by implementing the newest available one

https://babeljs.io/

1512/12/22

JS Execution Environments

JS (ES6)

Server & CLI
Node.js

Linux/Unix

Windows Native

WSL2 under
Windows

Browser

Runtime

Developer tools

Understanding

JavaScriptTutor

jsconsole

https://docs.microsoft.com/en-
us/windows/nodejs/setup-on-windows

https://docs.microsoft.com/en-
us/windows/nodejs/setup-on-wsl2

https://nodejs.org/

https://nodejs.org/en/download/package-
manager/

http://pythontutor.com/javascript.html

https://jsconsole.com/

https://docs.microsoft.com/en-us/windows/nodejs/setup-on-windows
https://docs.microsoft.com/en-us/windows/nodejs/setup-on-wsl2
https://nodejs.org/
https://nodejs.org/en/download/package-manager/
http://pythontutor.com/javascript.html
https://jsconsole.com/

1612/12/22

JavaScriptTutor

17

Browser and JS console

1812/12/22

LANGUAGE STRUCTURE
JavaScript – The language of the Web

1912/12/22

Lexical structure

• One File = One JS program
– Each file is loaded independently and
– Different files/programs may communicate through global state
– The “module” mechanism extends that (provides state sharing in a clean way)

• The file is entirely parsed, and then executed from top to bottom
• Relies on a standard library
– and many additional APIs provided by the execution environment

2012/12/22

Lexical structure

• JavaScript is written in Unicode (do not abuse), so it also supports non-
latin characters for names and strings
– even emoji

• Semicolons (;) are not mandatory (automatically inserted)
• Case sensitive
• Comments as in C (/*..*/ and //)
• Literals and identifiers (start with letter, $, _)
• Some reserved words
• C-like syntax

> let ööö = 'appalled'
> ööö
'appalled'

2112/12/22

Semicolon (;)

• Argument of debate in the JS community
• JS inserts them as needed

– When next line starts with code that breaks the current one
– When the next line starts with }
– When there is return, break, throw, continue on its own line

• Be careful that forgetting semicolon can lead to unexpected behavior
– A newline does not automatically insert a semicolon: if the next line starts with (or [, it

is interpreted as function call or array access
• We will loosely follow the Google style guide, so we will always insert

semicolons after each statement
– https://google.github.io/styleguide/jsguide.html

https://google.github.io/styleguide/jsguide.html

2212/12/22

Strict Mode

• Directive introduced in ES5: "use strict" ;
– Compatible with older version (it is just a string)

• Code is executed in strict mode
– This fixes some important language deficiencies and provides stronger error checking and

security
– Examples:

• fixes mistakes that make it difficult for JavaScript engines to perform optimizations: strict mode
code can sometimes be made to run faster than identical code that's not strict mode

• eliminates some JavaScript silent errors by changing them to throw errors
• functions invoked as functions and not as methods of an object have this undefined
• cannot define 2 or more properties or function parameters with the same name
• no octal literals (base 8, starting with 0)
• ...

// first line of file
"use strict" ;
// always!!

2312/12/22

LOADING JS IN THE BROWSER
JS in the browser

Mozilla Developer Network: The Script element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

2412/12/22

Loading JavaScript In The Browser

• JS must be loaded from an HTML document
• <script> tag
– Inline

– External

https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/script

...
<script>
alert('Hello');
</script>
...

...
<script src="file.js"></script>
...

2512/12/22

Where To Insert The <script> Tag?

• In the <head> section
– “clean” / “textbook” solution
– Very inefficient: HTML processing is stopped

until the script is loaded and executed
– Quite inconvenient: the script executes when

the document’s DOM does not exist yet
– But: see after!

• Just before the end of the document
– More efficient than the “textbook” solution

<!DOCTYPE html>
<html>
<head>
<title>Loading a script</title>
<script src="script.js"></script>

</head>
<body>
...

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<title>Loading a script</title>

</head>
<body>
...
<script src="script.js"></script>

</body>
</html>

2612/12/22

Performance Comparison In Loading JS

https://flaviocopes.com/javascript-async-defer/

https://flaviocopes.com/javascript-async-defer/

2712/12/22

New Loading Attributes

• <script async src="script.js"></script>
– Script will be fetched in parallel to parsing and evaluated as soon as it is available
– Not immediately executed, not blocking

• <script defer src="script.js"></script> (preferred)
– Indicate to a browser that the script is meant to be executed after the document

has been parsed, but before firing DOMContentLoaded (that will wait until the
script is finished)

– Guaranteed to execute in the order they are loaded

• Both should be placed in the <head> of the document

2812/12/22

defer vs. async

https://flaviocopes.com/javascript-async-defer/

https://flaviocopes.com/javascript-async-defer/

2912/12/22

Where Does The Code Run?

• Loaded and run in the browser sandbox
• Attached to a global context: the window object
• May access only a limited set of APIs
– JS Standard Library
– Browser objects (BOM)
– Document objects (DOM)

• Multiple <script>s are independent
– They all access the same global scope
– To have structured collaboration, modules are needed

3012/12/22

Events and Event Loop

• Most phases of processing and interaction with a web document will
generate Asynchronous Events (100’s of different types)

• Generated events may be handled by:
– Pre-defined behaviors (by the browser)
– User-defined event handlers (in your JS)
– Or just ignored, if no event handler is defined

• But JavaScript is single-threaded
– Event handling is synchronous and is based on an event loop
– Event handlers are queued on a Message Queue
– The Message Queue is polled when the main thread is idle

3112/12/22

Execution Environment

Allocated
Objects

Running
function calls

Pending event
handlers

3212/12/22

Event Loop

• During code execution you may
– Call functions à the function call is pushed to the call stack
– Schedule events à the call to the event handler is put in the Message Queue

• Events may be scheduled also by external events (user actions, I/O, network, timers, …)

• At any step, the JS interpreter:
– If the call stack is not empty, pop the top of the call stack and executes it
– If the call stack is empty, pick the head of the Message Queue and executes it

• A function call / event handler is never interrupted
– Avoid blocking code!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/#what-is-the-event-loop

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

3312/12/22

TYPES AND VARIABLES
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 2. Types, Values, and Variables

3412/12/22

Values and Types

Value

Primitive

string

"abc"

'abc'

`abc`

number

42

3.1415

boolean

true

false

null undefined

Object

Array

Function

User-
defined

Values have types.
Variables don’t.

3512/12/22

Boolean, true-truthy, false-falsy, comparisons

• ‘boolean’ type with literal values: true, false
• When converting to boolean
– The following values are ‘falsy’

• 0, -0, NaN, undefined, null, '' (empty string)

– Every other value is ‘truthy’
• 3, 'false', [] (empty array), {} (empty object)

• Booleans and Comparisons
– a == b // convert types and compare results
– a === b // inhibit automatic type conversion and compare results

> Boolean(3)
true
> Boolean('')
false
> Boolean(' ')
true

3612/12/22

Number

• No distinction between integers and reals
• Automatic conversions according to the operation

• There is also a distinct type "BigInt" (ES11, July 2020)
– an arbitrary-precision integer, can represent 253 numbers
– 123456789n
– With suffix ‘n’

3712/12/22

Special values

• undefined: variable declared but not initialized
– Detect with: typeof variable === 'undefined'
– void x always returns undefined

• null: an empty value
• Null and Undefined are called nullish values

• NaN (Not a Number)
– It is actually a number
– Invalid output from arithmetic operation or parse operation

3812/12/22

Variables

• Variables are pure references: they refer to a value
• The same variable may refer to different values (even of different types)

at different times

• Declaring a variable:
– let
– const
– var

> v = 7 ;
7
> v = 'hi' ;
'hi'

> let a = 5
> const b = 6
> var c = 7
> a = 8
8
> b = 9
Thrown:
TypeError: Assignment to
constant variable.
> c = 10
10

3912/12/22

Variable declarations
Declarator Can reassign? Can re-declare? Scope Hoisting * Note

let Yes No Enclosing block
{…}

No Preferred

const No § No Enclosing block
{…}

No Preferred

var Yes Yes Enclosing
function,
or global

Yes, to beginning
of function or file

Legacy, beware
its quirks, try not
to use

None (implicit) Yes N/A Global Yes Forbidden in
strict mode

* Hoisting = “lifting up” the definition of a variable (not
the initialization!) to the top of the current scope (e.g.,
the file or the function)

§ Prevents reassignment (a=2), does not prevent
changing the value of the referred object (a.b=2)

40

Scope

"use strict" ;

let a = 1 ;
const b = 2 ;
let c = true ;

let a = 5 ; // SyntaxError: Identifier 'a' has already been declared

41

Scope

"use strict" ;

let a = 1 ;
const b = 2 ;
let c = true ;

{ // creating a new scope...
let a = 5 ;
console.log(a) ;

}

console.log(a) ;

Each { } is called a block. 'let' and 'const' variables are block-scoped.

They exist only in their defined and inner scopes.

Typically, you don't
create a new scope in
this way!

4212/12/22

EXPRESSIONS
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 2. Types, Values, and Variables
Chapter 3. Expressions and Operators

Mozilla Developer Network
JavaScript Guide » Expressions and operators

4312/12/22

Operators

• Assignment operators
• Comparison operators
• Arithmetic operators
• Bitwise operators
• Logical operators
• String operators
• Conditional (ternary) operator
• Comma operator
• Unary operators
• Relational operators

Full reference and operator precedence:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Oper
ator_Precedence#Table

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

4412/12/22

Assignment

• let variable = expression ; // declaration with initialization
• variable = expression ; // reassignment

4512/12/22

Comparison operators

4612/12/22

Comparing Objects

• Comparison between objects with == or ===
compares the references to objects
– True only if they are the same object
– False if they are identical objects

• Comparison with < > <= >= first converts the object
(into a Number, or more likely a String), and then
compares the values
– It works, but may be unpredictable, depending on the

string format

> a={x:1}
{ x: 1 }

> b={x:1}
{ x: 1 }

> a===b
false

> a==b
false

4712/12/22

Logical operators

4812/12/22

Common operators

Or string
concatenation

Useful idiom:
a||b

if a then a else b
(a, with default b)

4912/12/22

Mathematical functions (Math global object)

• Constants: Math.E, Math.LN10, Math.LN2, Math.LOG10E,
Math.LOG2E, Math.PI, Math.SQRT1_2, Math.SQRT2

• Functions: Math.abs(), Math.acos(), Math.acosh(),
Math.asin(), Math.asinh(), Math.atan(), Math.atan2(),
Math.atanh(), Math.cbrt(), Math.ceil(), Math.clz32(),
Math.cos(), Math.cosh(), Math.exp(), Math.expm1(),
Math.floor(), Math.fround(), Math.hypot(), Math.imul(),
Math.log(), Math.log10(), Math.log1p(), Math.log2(),
Math.max(), Math.min(), Math.pow(), Math.random(),
Math.round(), Math.sign(), Math.sin(), Math.sinh(),
Math.sqrt(), Math.tan(), Math.tanh(), Math.trunc()

5012/12/22

CONTROL STRUCTURES
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 4. Statements

Mozilla Developer Network
JavaScript Guide » Control Flow and Error Handling
JavaScript Guide » Loops and Iteration

5112/12/22

Conditional statements
if (condition) {
statement_1;

} else {
statement_2;

}

if (condition_1) {
statement_1;

} else if (condition_2) {
statement_2;

} else if (condition_n) {
statement_n;

} else {
statement_last;

}

switch (expression) {
case label_1:
statements_1
[break;]

case label_2:
statements_2
[break;]
…

default:
statements_def
[break;]

}

May also be a string

if truthy (beware!)

5212/12/22

Loop statements
for ([initialExpression]; [condition]; [incrementExpression]) {
statement ;

}

do {
statement ;

} while (condition);

Usually declares loop
variable

while (condition) {
statement ;

}

May use break; or
continue;

5312/12/22

Special ‘for’ statements
for (variable of iterable) {
statement ;

}

for (variable in object) {
statement ;

}

• Iterates the variable over all the
enumerable properties of an object

• Do not use to traverse an array (use
numerical indexes, or for-of)

• Iterates the variable over all values of
an iterable object (including Array,
Map, Set, string, arguments …)

• Returns the values, not the keys

for(let a in {x: 0, y:3}) {
console.log(a) ;

}

x
y

for(let a of [4,7]) {
console.log(a) ;

}

4
7

for(let a of "hi") {
console.log(a) ;

}

h
i

Preferred

5412/12/22

Other iteration methods

• Functional programming (strongly supported by JS) allows other
methods to iterate over a collection (or any iterable object)
– a.forEach()
– a.map()

• We will not cover these methods in this course

5512/12/22

Exception handling
try {
statements ;

} catch(e) {
statements ;

}

try {
statements ;

} catch(e) {
statements ;

} finally {
statements ;

}

throw object ;

Executed in any case, at
the end of try and catch
blocks

Exception object

EvalError
RangeError
ReferenceError
SyntaxError
TypeError
URIError
DOMException

Contain fields: name,
message

5612/12/22

ARRAYS
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 6. Arrays

Mozilla Developer Network
JavaScript Guide » Indexed Collections

5712/12/22

Arrays

• Rich of functionalities
• Elements do not need to be of the same type
• Simplest syntax: []
• Property .length
• Distinguish between methods that:
– Modify the array (in-place)
– Return a new array

5812/12/22

Creating an array
let v = [] ;

let v = [1, 2, 3] ;

let v = [1, "hi", 3.1, true];

let v = Array.of(1, 2, 3) ;

let v = Array.of(1, "hi",
3.1, true) ;

Elements are indexed at
positions 0...length-1

Do not access elements
outside range

5912/12/22

Adding elements

let v = [] ;
v[0] = "a" ;
v[1] = 8 ;
v.length // 2

let v = [] ;
v.push("a") ;
v.push(8) ;
v.length // 2

.push() adds at the
end of the array

.unshift() adds at
the beginning of the
array

.lenght adjusts
automatically

6012/12/22

Adding and Removing from arrays (in-place)

[0] [1] [2] [3] … … [n-1]

v.push(x)

x = v.pop()

v.unshift(x)

x = v.shift()

6112/12/22

Copying arrays

let v = [] ;
v[0] = "a" ;
v[1] = 8 ;

let alias = v ;
alias[1] = 5 ;

?

6212/12/22

Copying arrays

let v = [] ;
v[0] = "a" ;
v[1] = 8 ;

let alias = v ;
let copy = Array.from(v) ;

Array.from creates a
shallow copy

Creates an array from
any iterable object

6312/12/22

Iterating over Arrays

• Iterators: for ... of, for (..;..;..)
• Iterators: forEach(f)
– f is a function that processes the element

• Iterators: every(f), some(f)
– f is a function that returns true or false

• Iterators that return a new array: map(f), filter(f)
– f works on the element of the array passed as parameter

• Reduce: exec a callback function on all items to progressively compute a
result

Fu
nc

tio
na

l s
ty

le

Preferred

6412/12/22

Main array methods
• .concat()

– joins two or more arrays and returns a new
array.

• .join(delimiter = ',')
– joins all elements of an array into a (new)

string.
• .slice(start_index, upto_index)

– extracts a section of an array and returns a
new array.

• .splice(index, count_to_remove,
addElement1, addElement2, ...)
– removes elements from an array and

(optionally) replaces them, in place

• .reverse()
– transposes the elements of an array, in place

• .sort()
– sorts the elements of an array in place

• .indexOf(searchElement[,
fromIndex])
– searches the array for searchElement and

returns the index of the first match
• .lastIndexOf(searchElement[,

fromIndex])
– like indexOf, but starts at the end

• .includes(valueToFind[,
fromIndex])
– search for a certain value among its entries,

returning true or false

6512/12/22

Destructuring assignment

• Value of the right-hand side of equal signal are extracted and stored in the
variables on the left

let [x,y] = [1,2];
[x,y] = [y,x]; // swap

var foo = ['one', 'two', 'three'];
var [one, two, three] = foo;

• Useful especially with passing and returning values from functions

let [x,y] = toCartesian(r,theta);

6612/12/22

Spread operator (3 dots:...)

• Expands an interable object in its parts, when the syntax requires a
comma-separated list of elements
let [x, ...y] = [1,2,3,4]; // we obtain y == [2,3,4]

const parts = ['shoulders', 'knees'];
const lyrics = ['head', ...parts, 'and', 'toes']; // ["head", "shoulders",
"knees", "and", "toes"]

• Works on the left- and right-hand side of the assignment

6712/12/22

Curiosity

• Copy by value:
– const b = Array.from(a)

• Can be emulated by
– const b = Array.of(...a)
– const b = [...a]

Frequent
idiom

6812/12/22

STRINGS
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 2. Types, Values, and Variables

Mozilla Developer Network
JavaScript Guide » Text Formatting

6912/12/22

Strings in JS

• A string is an immutable ordered sequence of Unicode(*) characters
• The length of a string is the number of characters it contains (not bytes)
• JavaScript’s strings use zero-based indexing
– The empty string is the string of length 0

• JavaScript does not have a special type that represents a single character
(use length-1 strings).

• String literals may be defined with 'abc' or "abc"
– Note: when dealing with JSON parsing, only " " can be correctly parsed

7012/12/22

String operations

• All operations always return new strings
– Consequence of immutability

• s[3]: indexing
• s1 + s2: concatenation
• s.length: number of characters
– Note: .length , not .length()

7112/12/22

String
methods

7212/12/22

Template literals

• Strings included in `backticks` can embed expressions delimited by ${}
• The value of the expression is interpolated into the string

let name = "Bill";
let greeting = `Hello ${ name }.`;
// greeting == "Hello Bill."

• Very useful and quick for string formatting
• Template literals may also span multiple lines

7512/12/22

OBJECTS
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 5. Objects

Mozilla Developer Network
• Learn web development JavaScript » Dynamic client-side

scripting » Introducing JavaScript objects
• Web technology for developers » JavaScript » JavaScript

reference » Standard built-in objects » Object
• Web technology for developers » JavaScript » JavaScript

reference » Expressions and operators » in operator

7612/12/22

Big Warnings

• In JavaScript, Objects may exist without Classes
– Usually, Objects are created directly, without deriving them from a Class

definition
• In JavaScript, Objects are dynamic
– You may add, delete, redefine a property at any time
– You may add, delete, redefine a method at any time

• In JavaScript, there are no access control methods
– Every property and every method is always public (private/protected don’t exist)

• There is no real difference between properties and methods (because of
how JS functions work)

7712/12/22

Object

• An object is an unordered collection of properties
– Each property has a name (key), and a value

• You store and retrieve property values, through the property names
• Object creation and initialization:

let point = { x: 2, y: 5 };

let book = {
author : "Enrico",
title : "Learning JS",
for: "students",
pages: 520,

};

Object literals syntax:
{"name": value,
"name": value, }

or:
{name: value,
name: value, }

7812/12/22

Object Properties

Property names are …

• Identified as a string
• Must be unique in each object
• Created at object initialization
• Added after object creation
– With assignment

• Deleted after object creation
– With delete operator

Property values are …

• Reference to any JS value
• Stored inside the object
• May be primitive types
• May be arrays, other objects, …
– Beware: the object stores the

reference, the value is outside

• May also be functions (methods)

7912/12/22

Accessing properties

• Dot (.) or square brackets [] notation
let book = {
author : "Enrico",
title : "Learning JS",
for: "students",
pages: 340,
"chapter pages": [90,50,60,140]

};

let person = book.author;
let name = book["author"];
let numPages =

book["chapter pages"];
book.title = "Advanced JS";
book["pages"] = 340;

The . dot notation and omitting the quotes are
allowed when the property name is a valid

identifier, only.
book.title or book['title']

book['my title'] and not book.my title

8012/12/22

Objects as associative arrays

• The [] syntax looks like array access, but the index is a string
– Generally known as associative arrays

• Setting a non-existing property creates it:
– person["telephone"] = "0110901234";
– person.telephone = "0110901234";

• Deleting properties
– delete person.telephone;
– delete person["telephone"];

8112/12/22

Computed property names

• Flexibility in creating object
properties
– {[prop]:value} -> creates an

object with property name equal to
the value of the variable prop

– [] can contain more complex
expressions: e.g., i-th line of an
object with multiple "address"
properties (address1, address2, …):
person["address"+i]
• Using expressions is not

recommended…

• Beware of quotes:
– book["title"] -> property called
title
• Equivalent to book.title

– book[title] -> property called
with the value of variable title (if
exists)
• If title=="author", then equivalent

to book["author"]
• No equivalent in dot-notation

8212/12/22

Property access errors

• If a property is not defined, the (attempted) access returns undefined
• If unsure, must check before accessing
– Remember: undefined is falsy, you may use it in Boolean expressions

let surname = undefined;
if (book) {

if (book.author) {
surname = book.author.surname;

}
}

surname = book && book.author && book.author.surname;

8312/12/22

Iterating over properties

• for .. in iterates over the properties

for(let a in {x: 0, y:3}) {
console.log(a) ;

}

x
y

let book = {
author : "Enrico",
pages: 340,
chapterPages: [90,50,60,140],

};

for (const prop in book)
console.log(`${prop} = ${book[prop]}`);

author = Enrico
pages = 340
chapterPages = 90,50,60,140

8412/12/22

Iterating over properties

• All the (enumerable) properties names (keys) of an object can be
accessed as an array, with:
– let keys = Object.keys(my_object) ;

• All pairs [key, value] are returned as an array with:
– let keys_values = Object.entries(my_object)

[['author', 'Enrico'], ['pages', 340]]

['author', 'pages']

8512/12/22

Copying objects

let book = {
author : "Enrico",
pages: 340,

};

let book2 = book; // ALIAS

let book = {
author : "Enrico",
pages: 340,

};

let book3 = // COPY
Object.assign({}, book);

8612/12/22

Object.assign

• let new_object = Object.assign(target, source);
• Assigns all the properties from the source object to the target one
• The target may be an existing object
• The target may be a new object: {}
• Returns the target object (after modification)

8712/12/22

Beware! Shallow copy, only

let book = {
author : "Enrico",
pages: 340,

};

let study = {
topic: "JavaScript",
source: book,

};

let study2 = Object.assign({},
study);

8812/12/22

Merge properties (on existing object)

• Object.assign(target, source, default values, ..);

let book = {
author : "Enrico",
pages: 340,

};

let book2 = Object.assign(
book, {title: "JS"}
);

8912/12/22

Merge properties (on new object)

• Object.assign(target, source, default values, ..);

let book = {
author : "Enrico",
pages: 340,

};

let book2 = Object.assign(
{}, book, {title: "JS"}
);

9012/12/22

Checking if properties exist

• Operator in
– Returns true if property is in the object. Do not use with Array

let book = {
author : "Enrico",
pages: 340,

};

console.log('author' in book);
delete book.author;
console.log('author' in book);

true
false

const v=['a','b','c’];

console.log('b' in v);

console.log('PI' in Math);

false
true

9112/12/22

Object creation (equivalent methods)

• By object literal: const point = {x:2, y:5} ;
• By object literal (empty object): const point = {} ;
• By constructor: const point = new Object() ;
• By object static method create:
const point = Object.create({x:2,y:5}) ;

• Using a constructor function

Preferred

9212/12/22

FUNCTIONS
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 7. Functions

9312/12/22

Functions

• One of the most important elements in JavaScript
• Delimits a block of code with a private scope
• Can accept parameters and returns one value
– Can also be an object

• Functions themselves are objects in JavaScript
– They can be assigned to a variable
– Can be passed as an argument
– Used as a return value

9412/12/22

Declaring functions: 3 ways

function do(params) {
/* do something */

}

1) Classic

9512/12/22

Classic functions

function square(x) {
let y = x * x ;
return y ;

}

let n = square(4) ;

During
execution

After
execution

9612/12/22

Parameters

• Comma-separated list of parameter names
– May assign a default value, e.g., function(a, b=1) {}

• Parameters are passed by-value
– Copies of the reference to the object

• Parameters that are not passed in the function call get the value
‘undefined’

• Check missing/optional parameters with:
– if(p===undefined) p = default_value ;
– p = p || default_value ;

9712/12/22

Variable number of parameters

• Syntax for functions with variable number of parameters, using the ...
operator (called “rest”)
function fun (par1, par2, ...arr) { }

• The “rest” parameter must be the last, and will deposit all extra arguments
into an array
function sumAll(initVal, ...arr) {
let sum = initVal;
for (let a of arr) sum += a;
return sum;

}
sumAll(0, 2, 4, 5); // 11

9812/12/22

Declaring functions: 3 ways

function do(params) {
/* do something */

}

const fn = function(params) {
/* do something */

}

1) Classic 2a) Function expression

const fn = function do(params) {
/* do something */

}

2b) Named function expression

9912/12/22

Function expression: indistinguishable

function square(x) {
let y = x * x ;
return y ;

}

let cube = function c(x) {
let y = square(x)*x ;
return y ;

}

let n = cube(4) ;

The expression function(){} creates a new
object of type ‘function’ and returns the result.

Any variable may “refer” to the function and call it.
You can also store that reference into an array, an

object property, pass it as a parameter to a function,
redefine it, …

method callback

10012/12/22

Declaring functions: 3 ways

function do(params) {
/* do something */

}

const fn = (params) => {
/* do something */

}

1) Classic

3) Arrow function

const fn = function(params) {
/* do something */

}

2a) Function expression

const fn = function do(params) {
/* do something */

}

2b) Named function expression

10112/12/22

Arrow Function: just a shortcut

function square(x) {
let y = x * x ;
return y ;

}

let cube = function c(x) {
let y = square(x)*x ;
return y ;

}

let fourth = (x) => { return
square(x)*square(x) ; }

let n = fourth(4) ;

10212/12/22

Parameters in arrow functions
const fun = () => { /* do something */ } // no params

const fun = param => { /* do something */ } // 1 param

const fun = (param) => { /* do something */ } // 1 param

const fun = (par1, par2) => { /* smtg */ } // 2 params

const fun = (par1 = 1, par2 = 'abc') => { /* smtg */ } // default values

10312/12/22

Return value

• Default: undefined
• Use return to return a value
• Only one value can be returned
• However, objects (or arrays) can be returned

const fun = () => { return ['hello', 5] ; }
const [str, num] = fun() ;
console.log(str) ;

• Arrow functions have implicit return if there is only one value
let fourth = (x) => { return square(x)*square(x) ; }
let fourth = x => square(x)*square(x) ;

10412/12/22

Nested functions

• Function can be nested, i.e., defined within another function
function hypotenuse(a, b) {

const square = x => x*x ;
return Math.sqrt(square(a) + square(b));

}

function hypotenuse(a, b) {
function square(x) { return x*x; }
return Math.sqrt(square(a) + square(b));

}

• The inner function is scoped within the external function and cannot be called
outside

• The inner function might access variables declared in the outside function

=> Preferred in nested functions

11312/12/22

DATES
JavaScript – The language of the Web

JavaScript: The Definitive Guide, 7th Edition
Chapter 9.4 Dates and Times

Mozilla Developer Network
Web technology for developers » JavaScript »
JavaScript reference »
Standard built-in objects » Date

Day.js
https://day.js.org/en/

11412/12/22

Date object

• Store a time instant with
millisecond precision, counted from
Jan 1, 1970 UTC (Unix Epoch)

• Careful with time zones
– Most methods work in local time (not

UTC) the computer is set to

let newYearMorning = new Date(
2021, // Year 2021
0, // January (from 0)
1, // 1st
18, 15, 10, 743);
// 18:15:10.743, local time

let now = new Date();

Formatting is locale-
dependent
😱😱

UTC vs Local time zone are confusing.
> new Date('2020-03-18')
2020-03-18T00:00:00.000Z
> new Date('18 March 2020')
2020-03-17T23:00:00.000Z

😱

Comparisons are difficult (no way
to specify which fields you want,
must set them to zero explicitly)

😱😱😱

11512/12/22

Serious JS date/time handling libraries

https://moment.github.io/luxon/https://day.js.org/

https://date-fns.org/https://momentjs.com/ https://js-joda.github.io/js-joda/

11612/12/22

Day.js Library

• Goals
– Compatible with moment.js

• But very small (2kB)

– Works in nodejs and in the browser
– All objects are immutable

• All API functions that modify a date,
will always return a new object
instance

– Localization
– Plugin system for extending

functionality

https://day.js.org/

https://day.js.org/

11712/12/22

Basic operations with Day.js

Creating date objects – dayjs() constructor
let now = dayjs() // today
let date1 = dayjs('2019-12-27T16:00');

// from ISO 8601 format
let date2 = dayjs('20191227');

// from 8-digit format
let date3 = dayjs(new Date(2019, 11, 27));

// from JS Date object
let date5 = dayjs.unix(1530471537);

// from Unix timestamp

By default, Day.js parses in local time

Displaying date objects – format()
console.log(now.format());

2021-03-02T16:38:38+01:00

console.log(now.format('YYYY-MM [on the] DD'));
2021-03 on the 02

console.log(now.toString());
Tue, 02 Mar 2021 15:43:46 GMT

By default, Day.js displays in local time

Applicazioni Web I - Web Applications I - 2021/2022

https://day.js.org/docs/en/parse/parse

https://day.js.org/docs/en/parse/parse

11812/12/22

obj.unit() -> get
obj.unit(new_val) -> set

let now2 = now.date(15);
let now2 = now.set('date', 15);

2021-03-15T16:50:26+01:00

let now3 = now.minute(45);
let now3 = now.set('minute',45);

2021-03-02T16:45:26+01:00

let today_day = now.day();
let today_day = now.get('day');

2

Applicazioni Web I - Web Applications I - 2021/2022

https://day.js.org/docs/en/get-set/get-set

Get/Set date/time components

https://day.js.org/docs/en/get-set/get-set

11912/12/22

Date Manipulation and Comparison

• Methods to "modify" a date (and
return a modified one)

• .add / .subtract
• .startOf / .endOf
• d1.diff(d2, ‘unit’)
• Specify the unit to be

added/subtracted/rounded
• Can be easily chained

• Day.js objects can be compared
• .isBefore / .isSame /
.isAfter

• .isBetween
• .isLeapYear / .daysInMonth

Applicazioni Web I - Web Applications I - 2021/2022

let wow = dayjs('2019-01-25').add(1, 'day').subtract(1, 'year').year(2009).toString() ;
// "Sun, 25 Jan 2009 23:00:00 GMT"

12012/12/22

Day.js Plugins

• To keep install size minimal,
several functions are only
available in plugins

• Plugins must be
– Loaded
– Registered into the libraries

• Then, functions may be freely
used

const isLeapYear =
require('dayjs/plugin/isLeapYear’) ;

// load plugin

dayjs.extend(isLeapYear) ;
// register plugin

console.log(now.isLeapYear()) ;
// use function

Applicazioni Web I - Web Applications I - 2021/2022

12112/12/22

Advanced Day.js Topics

• Localization / Internationalization
– Language-aware and locale-aware

parsing and formatting
– Various formatting patterns for

different locales/languages

• Durations
– Measuring time intervals (the

difference between two time
instants)

– Interval arithmetic

• Time Zones
– Conversion between time zones

Applicazioni Web I - Web Applications I - 2021/2022

12212/12/22

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

